Arabidopsis BREVIPEDICELLUS Interacts with the SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA to Regulate KNAT2 and KNAT6 Expression in Control of Inflorescence Architecture
نویسندگان
چکیده
BREVIPEDICELLUS (BP or KNAT1), a class-I KNOTTED1-like homeobox (KNOX) transcription factor in Arabidopsis thaliana, contributes to shaping the normal inflorescence architecture through negatively regulating other two class-I KNOX genes, KNAT2 and KNAT6. However, the molecular mechanism of BP-mediated transcription regulation remains unclear. In this study, we showed that BP directly interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) both in vitro and in vivo. Loss-of-function BRM mutants displayed inflorescence architecture defects, with clustered inflorescences, horizontally orientated pedicels, and short pedicels and internodes, a phenotype similar to the bp mutants. Furthermore, the transcript levels of KNAT2 and KNAT6 were elevated in brm-3, bp-9 and brm-3 bp-9 double mutants. Increased histone H3 lysine 4 tri-methylation (H3K4me3) levels were detected in brm-3, bp-9 and brm-3 bp-9 double mutants. Moreover, BRM and BP co-target to KNAT2 and KNAT6 genes, and BP is required for the binding of BRM to KNAT2 and KNAT6. Taken together, our results indicate that BP interacts with the chromatin remodeling factor BRM to regulate the expression of KNAT2 and KNAT6 in control of inflorescence architecture.
منابع مشابه
ATH1 and KNAT2 proteins act together in regulation of plant inflorescence architecture
The inflorescence of flowering plants is a highly organized structure, not only contributing to plant reproductive processes, but also constituting an important part of the entire plant morphology. Previous studies have revealed that the class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS (BP or KNAT1), KNAT2, and KNAT6 play essential roles in inflorescence architecture. Pedicel morphol...
متن کاملThe SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis.
The survival of plants as sessile organisms depends on their ability to cope with environmental challenges. Of key importance in this regard is the phytohormone abscisic acid (ABA). ABA not only promotes seed dormancy but also triggers growth arrest in postgermination embryos that encounter water stress. This is accompanied by increased desiccation tolerance. Postgermination ABA responses in Ar...
متن کاملThe Arabidopsis SWI2/SNF2 Chromatin Remodeling ATPase BRAHMA Targets Directly to PINs and Is Required for Root Stem Cell Niche Maintenance.
BRAHMA (BRM), a SWI/SNF chromatin remodeling ATPase, is essential for the transcriptional reprogramming associated with development and cell differentiation in Arabidopsis thaliana. In this study, we show that loss-of-function mutations in BRM led to defective maintenance of the root stem cell niche, decreased meristematic activity, and stunted root growth. Mutations of BRM affected auxin distr...
متن کاملThe Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering.
Chromatin remodeling is essential for the reprogramming of transcription associated with development and cell differentiation. The SWI/SNF complex was the first chromatin remodeling complex characterized in yeast and Drosophila. In this work we have characterized an Arabidopsis thaliana homolog of Brahma, the ATPase of the Drosophila SWI/SNF complex. As its Drosophila counterpart, Arabidopsis t...
متن کاملSWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPALLATA3 transcription factors.
Patterning of the floral organs is exquisitely controlled and executed by four classes of homeotic regulators. Among these, the class B and class C floral homeotic regulators are of central importance as they specify the male and female reproductive organs. Inappropriate induction of the class B gene APETALA3 (AP3) and the class C gene AGAMOUS (AG) causes reduced reproductive fitness and is pre...
متن کامل